12) на сторонах ab, bc, cd и ad ромба abcd взяты точки p, k, h, m соответственно. каждая из прямых pm, kh, pk параллельна одной из осей симметрии ромба. диагональ ac пересекает отрезок pm в точке e, а отрезок kh в точке t а) докажите,что диагонали четырехугольника epкt равны б) определите вид четырёхугольника mpkh.

rstksmirnov rstksmirnov    2   27.09.2019 02:10    5

Ответы
ира796 ира796  08.10.2020 21:39
A)

1) Симметриями ромба являются его диагонали. Значит, PM || BD , KH || BD , PK || AC .

Так как PM || BD , KH || BD , то PM || KH , РK || AC

Значит, четырёхугольник EPKT - параллелограмм

По свойству ромба: диагонали ромба взаимно перпендикулярны =>

AC перпендикулярно BD

К тому же PM || BD , KH || BD

Значит, отрезки KH и PM перпендикулярны отрезку AC

PK || AC, KH || PM , KH и PM перпендикулярны отрезку AC

Из всего этого следует, что параллелограмм EPKT является прямоугольником

По свойству прямоугольника:

Диагонали прямоугольника равны, что и требовалось доказать

б)

Так как ромб - это симметричная фигура
следует, что относительно диагоналей AC и ВD происходит симметрия =>

∆ ABC = ∆ АСD

Из первого пункта было сказано, что EPKT является прямоугольником

Значит, прямоугольник EPKT симметрично накладывается на четырёхугольник METH, которые вследствие симметричности является также прямоугольником. А значит, весь четырехугольник МРKH является прямоугольником.

Для точности докажем, что точки Р и М, К и Н симметричны относительно диагонали АС

∆ АРЕ = ∆ АЕМ - по катету и острому углу ( угол ВАС = угол САD - по свойству ромба ; АЕ - общая сторона )
Значит, РЕ = ЕМ

Аналогично доказывается, что КТ = ТН . Поэтому точки Р и К соответственно симметричны точкам М и Н относительно диагонали АС.

ОТВЕТ: прямоугольник
12) на сторонах ab, bc, cd и ad ромба abcd взяты точки p, k, h, m соответственно. каждая из прямых p
ПОКАЗАТЬ ОТВЕТЫ
Намиг123 Намиг123  08.10.2020 21:39

Ромб ABCD симметричен относительно диагоналей AC, BD.

PM || BD || KH, PK||AC

(Если точки находятся по разные стороны от диагонали, то, очевидно, отрезок, соединяющий точки, пересекает диагональ и не может быть ей параллелен.)


1) Диагонали ромба перпендикулярны, AC⊥BD. Прямые, параллельные перпендикулярным, перпендикулярны*, PM⊥AC, KH⊥AC, PK⊥BD. Смежные стороны EPKT лежат на перпендикулярных прямых, EPKT - прямоугольник. Диагонали прямоугольника равны.


2) Стороны ромба равны, диагональ делит ромб на равнобедренные треугольники. Прямая, параллельная диагонали, отсекает подобный равнобедренный треугольник, PB=BK, MA=AP, KC=CH. Из равных длин вычитаем равные, AP=KC. Противоположные углы ромба равны, MA=AP=KC=CH => △MAP и △KCH равны по двум сторонам и углу между ними, PM=KH. MPKH - параллелограмм (противоположные стороны равны и параллельны). PM||BD, PK⊥BD => PM⊥PK. Параллелограмм с прямым углом - прямоугольник.


____________________________________________________________

* Соответственные углы при параллельных равны. Если секущая пересекает одну параллельную под прямым углом, то и другую она пересекает под прямым углом.


12) на сторонах ab, bc, cd и ad ромба abcd взяты точки p, k, h, m соответственно. каждая из прямых p
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Геометрия