11.сформулируйте определение окружности, описанной около треугольника.сформулируйте и докажите теорему о центре описанной окружности. пример применения теоремы о центре описанной окружности
Окружность- это геометрическое место точек равноудалённых от данной точки( от центра окружности) Теорема. Центр окружности, описанной около треугольника, является точкой пересечения перпендикуляров к сторонам треугольника, проведенных через середины этих сторон. Доказательство. Пусть ABC – данный треугольник и O – центр окружности описанной около данного треугольника. Δ AOB – равнобедренный ( AO = OB как радиусы). Медиана OD этого треугольника одновременно является его высотой. Поэтому центр окружности лежит на прямой, перпендикулярной стороне AC и проходящей через ее середину. Так же доказывается, что центр окружности на перпендикулярах к другим сторонам треугольника. Теорема доказана. Мы применяем данную теорему при решении задач. Например, когда доказываем, что данный треугольник вписан в эту окружность.
Теорема.
Центр окружности, описанной около треугольника, является точкой пересечения перпендикуляров к сторонам треугольника, проведенных через середины этих сторон.
Доказательство.
Пусть ABC – данный треугольник и O – центр окружности описанной около данного треугольника. Δ AOB – равнобедренный ( AO = OB как радиусы). Медиана OD этого треугольника одновременно является его высотой. Поэтому центр окружности лежит на прямой, перпендикулярной стороне AC и проходящей через ее середину. Так же доказывается, что центр окружности на перпендикулярах к другим сторонам треугольника. Теорема доказана.
Мы применяем данную теорему при решении задач. Например, когда доказываем, что данный треугольник вписан в эту окружность.