1.Дан равнобедренный треугольник MBK, MK- основание. Сторону MB продолжили и на полученной прямой отметили точку A так, что точка M оказалась между A и B ,при этом AM=MK. Угол MBK=56 градусов. Найдите угол MAK 2.в треугольнике BCD провели биссектрису BK. Угол KBD= 32 градуса, угол BDK = 57 градусов. Найдите угол BCD

Тролечка Тролечка    2   13.04.2021 15:39    2

Ответы
maanna24 maanna24  13.05.2021 15:40

1) △AMK - р/б (AM=MK) => ∠MAK=∠MKA =x

∠BMK =∠MAK+∠MKA =2x (внешний угол)

△MBK - р/б => ∠BMK=∠BKM

∠BMK =(180-B)/2 =(180-56)/2 =62

x =62/2 =31°

2) Биссектриса делит угол пополам.

∠CBD =2∠KBD =32*2 =64

∠BDC =∠BDK =57

∠BCD =180-∠CBD-∠BDC =180-64-57 =59°


1.Дан равнобедренный треугольник MBK, MK- основание. Сторону MB продолжили и на полученной прямой от
1.Дан равнобедренный треугольник MBK, MK- основание. Сторону MB продолжили и на полученной прямой от
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Геометрия

Популярные вопросы