Движения двух материальных точек выражаются уравнениями: x1=a1+b1t+c1t², x2=a2+b2t+c2t², где a1=20 м, a2=2 м, b1=4 м/c, b2=2 м/с, c1= - 4 м/с², с2=0,5 м/с². в какой момент времени t скорости этих точек будут одинаковыми? определить скорости υ1 и υ2 и ускорения a1 и a2 точек в этот момент.

handofkremlin handofkremlin    2   28.08.2019 10:00    18

Ответы
Vetal321 Vetal321  03.08.2020 10:31
Х1=20+2t+4t^2, x2=2+2t+0,5t^2 . Из уравнений, сравнивая их с уравнением в общем виде х=х0+v0t +at^2 / 2, определим начальные координаты х0, начальные скорости v0, ускорения а.
х01=20м, v01=2м/с, а1=8м/с^2 x02=2м, v02=2м/c, a2=1м/c^2.
При равноскоренном движении ускорение не меняется ( постоянно) , поэтому
ускорения а1=8м/c^2, a2=1м/c^2 ( из данных). Так как начальные скорости одинаковые, а ускорения разные, причем движение происходит с увеличивающейся скоростью, поэтому больше одиннаковых скоростей у них не будет, кроме начальных. v01=v02=2м/c.
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Физика