Анализируем: здесь — неотрицательная величина; имеем: при умножении неотрицательной величины с другим выражением мы можем получить отрицательное число, если второе выражение будет отрицательным, а первое — не равным нулю:
Итак, общим ответом будет
Второй
Решим неравенство методом интервалов:
1) Найдем нули данного выражения:
2) ОДЗ: все числа
3) Начертим координатную прямую и отметим нули данного выражения выколотыми точками (так как неравенство строгое) и определим знак на каждом участке и объединим участок (участки), содержащие знак "минус" (см. вложение).
Первый
Анализируем: здесь
— неотрицательная величина; имеем: при умножении неотрицательной величины с другим выражением мы можем получить отрицательное число, если второе выражение будет отрицательным, а первое — не равным нулю:
Итак, общим ответом будет![x \in (-\infty ; \ 1) \cup (1; \ 5)](/tpl/images/1058/2730/293e8.png)
Второй
Решим неравенство методом интервалов:
1) Найдем нули данного выражения:
2) ОДЗ: все числа
3) Начертим координатную прямую и отметим нули данного выражения выколотыми точками (так как неравенство строгое) и определим знак на каждом участке и объединим участок (участки), содержащие знак "минус" (см. вложение).
Итак, общим ответом будет![x \in (-\infty ; \ 1) \cup (1; \ 5)](/tpl/images/1058/2730/293e8.png)