Вычислите площадь фигуры, ограниченной линиями y=x^3-4x^2 и y=2x^2-9x

samuraterikov0 samuraterikov0    1   13.07.2019 19:50    1

Ответы
arino4ka3210 arino4ka3210  07.09.2020 11:16
Найдем точки пересечения дуг y=x³-4x² и y=2x²-9x
x³-4x² =2x²-9x
x³-4x² -2x²+9x=0
x³-6x² +9x=0
x(x²-6x+9)=0
x(x-3)²=0
x=0, x=3
площадь равна
|\int\limits^3_0 {(x^3-4x^2)} \, dx- \int\limits^3_0 {(2x^2-9x)} \, dx| = |\int\limits^3_0 {(x^3-4x^2-2x^2+9x)} \, dx|= \\ |(x^4/4-6x^3/3+9x^2/2)|_0^3 |= |(x^4/4-2x^3+9x^2/2)|_0^3 |= \\ |81/4-54+81/2|=6,75
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Алгебра