Вправильной треугольной пирамиде sabc с вершиной s, все ребра которой равны 2, точка м — середина ребра ав, точка о — центр основания пирамиды, точка f делит отрезок so в отношении 3: 1, считая от вершины пирамиды. найдите расстояние от точки с до прямой mf.

denisdenisov300 denisdenisov300    2   31.07.2019 18:30    1

Ответы
elyasfel elyasfel  28.09.2020 19:25
SO-высота тетраэдра, a=2
SO=a√(2/3)
FO=SO/4=a√(2/3)/4

CM-высота правильного треугольника 
СМ=a(√3)/2
высота равностороннего треугольника делится в точке пересечения высот в отношении 2:1 
О является центром пересечения высот
ОМ=СМ/3=a(√3)/6

MFO- прямоугольный треугольник
tgFMO=FO/OM=[a(√(2/3)/4]/[a(√3)/6]=(√2)/2
sin²a=tg²a/(tg²a+1)
sina=√(tg²a/(tg²a+1))
sin FMO=√(1/2)/(3/2)=1/√3
CX/CM=sinFMO
CX=CMsinFMO=[ a(√3)/2]*(1/√3)=a/2=2/2=1

Вправильной треугольной пирамиде sabc с вершиной s, все ребра которой равны 2, точка м — середина ре
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Алгебра