Вариант 1

Вычислите неопределенные интегралы:

∫▒(〖4x〗^3-〖6x〗^2-4x+3) dx

∫▒(x^4-〖xe〗^x+6)/x dx

Вычислите определенные интегралы:

∫_(-1)^0▒(x^3+2x)dx

∫_4^5▒〖(4-x)^3 dx〗

Найдите площадь фигуры, ограниченной​

22Cat22 22Cat22    2   30.05.2020 12:03    377

Ответы
Kylp Kylp  14.01.2024 14:44
Вариант 1:

1) Для вычисления неопределенного интеграла ∫(4x^3-6x^2-4x+3) dx, мы применяем правила интегрирования. Для каждого члена полинома мы используем формулы интегрирования полиномов: ∫(x^n) dx = (x^(n+1))/(n+1) + C, где C - произвольная постоянная.

Таким образом, интеграл ∫(4x^3-6x^2-4x+3) dx будет равен:
(4x^4/4) - (6x^3/3) - (4x^2/2) + 3x + C = x^4 - 2x^3 - 2x^2 + 3x + C, где C - произвольная постоянная.

2) Для вычисления неопределенного интеграла ∫((x^4-xe^x+6)/x) dx, мы можем разделить интеграл на несколько слагаемых и применить правило линейности интеграла, которое позволяет интегрировать каждое слагаемое по отдельности.

∫((x^4-xe^x+6)/x) dx = ∫(x^4/x) dx - ∫(xe^x/x) dx + ∫(6/x) dx

Далее мы можем использовать формулы интегрирования:
- ∫(x^n/x) dx = ∫(x^(n-1)) dx = (x^n)/n + C, где C - произвольная постоянная.
- ∫(e^x) dx = e^x + C, где C - произвольная постоянная.

В итоге получаем следующее:
(x^4/4) - (e^x) + 6ln|x| + C, где C - произвольная постоянная.

3) Для вычисления определенного интеграла ∫_(-1)^0 (x^3+2x) dx, мы можем использовать формулу интегрирования и подставить верхнюю и нижнюю границы интегрирования.

∫_(-1)^0 (x^3+2x) dx = [(x^4/4) + x^2]_(-1)^0 = ((0^4)/4 + 0^2) - ((-1^4)/4 + (-1)^2) = 0 - (1/4 + 1) = -5/4.

4) Для вычисления определенного интеграла ∫_4^5 (4-x)^3 dx, мы можем использовать формулу интегрирования и подставить верхнюю и нижнюю границы интегрирования.

∫_4^5 (4-x)^3 dx = [-(4-x)^4/4]_4^5 = [-(1/4)][(5-4)^4-(4-4)^4] = [-(1/4)][(1)^4-(0)^4] = [-(1/4)][1-0] = -1/4.

5) Чтобы найти площадь фигуры, ограниченной какими-либо функциями, нам необходимо знать эти функции. Пожалуйста, уточните, какие функции ограничивают фигуру, чтобы я мог посчитать площадь.
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Алгебра