Трое юношей и две девушки решили после окончания школы поступить на работу в своем родном городе.в городе имеется 3 завода,на которые набирают только мужчин,2,где нужны только женщины,и два,которые принимают на работу и мужчин и женщин.сколькими пять выпускников могут распределиться на работу?

ThreeDragons ThreeDragons    2   17.05.2019 12:50    9

Ответы
anya64yankop08swl anya64yankop08swl  10.06.2020 17:40

Каждый из юношей может устроиться на любой из 

3 + 2 = 5 

заводов. То есть для каждого юноши есть 5 вариантов.

всего юношей 3.

По условию задачи на одновременное трудоустройство на один завод запретов нет; следовательно события (работа для каждого юноши) можно считать независимыми

следовательно, общее число вариаций работы для юношей - это перемножение вариантов трудоустройства каждого:

С(общ.юн.) = С(1юн) * С(2юн) * С(3юн) = 5*5*5 = 125 вариантов

 

Для девушек: аналогичное рассуждение. Заводов 

2 + 2 = 4

девушек 2

С(общ.дев.) = С(1дев) * С(2дев) = 4*4= 16 вариантов

  Общее число для всех:  

С(общ) = С(общ.юн) * С(общ.дев)  = 125 * 16 = 2000 вариантов.

 

ОТВЕТ

 

 

ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Алгебра

Популярные вопросы