если три числа составляют геометрическую прогрессию то их можно записать как
a; aq; aq²
их сумма a+aq+aq²=26; a(1+q+q²)=26⇒ a=26/(1+q+q²)
теперь выполним второе условие
a; aq+3; aq²-2 и теперь это арифметическая прогрессия, для которой выполняется условие:
aq+3-a=aq²-2-(aq+3)
a(q-1)+3=aq(q-1)-5
aq(q-1)-a(q-1)=8
a(q-1)²=8
подставим а=26/(1+q+q²)
26/(1+q+q²) * (q-1)²=8
26(q-1)²=8(1+q+q²)
18q²-60q+18=0 | :2
9q²-30q+9=0
D=900-324=576=24²
q₁=(30+24)/18=3; q₂=(30-24)/18=1/3
Теперь рассмотрим два случая
q₁=3. тогда a=26/(1+3+9)=2; aq=6; aq²=18
получили прогрессию 2; 6; 18
q₂=1/3. тогда a=26(1+1/3+1/9)=18; aq=6; aq²=2
получили прогрессию 18; 6; 2
Оба случая верные
если три числа составляют геометрическую прогрессию то их можно записать как
a; aq; aq²
их сумма a+aq+aq²=26; a(1+q+q²)=26⇒ a=26/(1+q+q²)
теперь выполним второе условие
a; aq+3; aq²-2 и теперь это арифметическая прогрессия, для которой выполняется условие:
aq+3-a=aq²-2-(aq+3)
a(q-1)+3=aq(q-1)-5
aq(q-1)-a(q-1)=8
a(q-1)²=8
подставим а=26/(1+q+q²)
26/(1+q+q²) * (q-1)²=8
26(q-1)²=8(1+q+q²)
18q²-60q+18=0 | :2
9q²-30q+9=0
D=900-324=576=24²
q₁=(30+24)/18=3; q₂=(30-24)/18=1/3
Теперь рассмотрим два случая
q₁=3. тогда a=26/(1+3+9)=2; aq=6; aq²=18
получили прогрессию 2; 6; 18
q₂=1/3. тогда a=26(1+1/3+1/9)=18; aq=6; aq²=2
получили прогрессию 18; 6; 2
Оба случая верные