Объяснение:
(a-b)/(ab^(1/2)) +a^(1/2) ·b=(a-b)/(ab^(1/2)) +(a^(1/2) ·b·ab^(1/2))/(ab^(1/2))=(a-b+a^(1/2 +1) ·b^(1 +1/2))/(ab^(1/2))=(a-b+a^(3/2) ·b^(3/2))/(ab^(1/2))=(a-b+ab√(ab))/(a√b)=(√b ·(a-b+ab√(ab))/(√b ·a√b)=(a√b -b√b +ab²√a)/(ab)=(ab²√a +a√b -b√b)/(ab)
Объяснение:
(a-b)/(ab^(1/2)) +a^(1/2) ·b=(a-b)/(ab^(1/2)) +(a^(1/2) ·b·ab^(1/2))/(ab^(1/2))=(a-b+a^(1/2 +1) ·b^(1 +1/2))/(ab^(1/2))=(a-b+a^(3/2) ·b^(3/2))/(ab^(1/2))=(a-b+ab√(ab))/(a√b)=(√b ·(a-b+ab√(ab))/(√b ·a√b)=(a√b -b√b +ab²√a)/(ab)=(ab²√a +a√b -b√b)/(ab)