Не люблю задания, в которых больше одной задачи. Но эти задачи симпатичные, допускающие не совсем стандартные рассуждения. Вот ради этих рассуждений я и берусь за решение задач.
4. ответ: - 1
Объяснение: арктангенс трех четвертых и арктангенс четырех третьих - это острые углы в прямоугольном треугольнике с катетами 3 и 4, поэтому их сумма равна 90 градусам.
6. арктангенсы одной второй и одной третьей меньше 45 градусов, поэтому их сумма лежит в первой четверти. Воспользуемся формулой
Осталось сосчитать синус полученного угла и возвести результат в квадрат. ответ: 0,5
5. Арксинус 4/5 - это острый угол (лежащий против катета, равного 4) прямоугольного треугольника ABC с катетами BC=4 и AC=3 и гипотенузой AB=5. Нас интересует половина этого угла, поэтому рисуем биссектрису AD , которая поделит катет BC на отрезки CD=3/2 и DB=5/2, пропорциональные боковым сторонам. В прямоугольном треугольнике ADC катеты AC=3; CD=3/2. Чтобы упростить вычисления, рассмотрим подобный ему треугольник A'D'C' с катетами A'C'=2 и C'D'=1 и гипотенузой A'D'=корень из 5. Интересующий нас угол, равный половине арксинуса 4/5 - это угол A' этого треугольника, а второй острый угол равен арктангенсу 2. Поэтому
Не люблю задания, в которых больше одной задачи. Но эти задачи симпатичные, допускающие не совсем стандартные рассуждения. Вот ради этих рассуждений я и берусь за решение задач.
4. ответ: - 1
Объяснение: арктангенс трех четвертых и арктангенс четырех третьих - это острые углы в прямоугольном треугольнике с катетами 3 и 4, поэтому их сумма равна 90 градусам.
6. арктангенсы одной второй и одной третьей меньше 45 градусов, поэтому их сумма лежит в первой четверти. Воспользуемся формулой
Осталось сосчитать синус полученного угла и возвести результат в квадрат. ответ: 0,5
5. Арксинус 4/5 - это острый угол (лежащий против катета, равного 4) прямоугольного треугольника ABC с катетами BC=4 и AC=3 и гипотенузой AB=5. Нас интересует половина этого угла, поэтому рисуем биссектрису AD , которая поделит катет BC на отрезки CD=3/2 и DB=5/2, пропорциональные боковым сторонам. В прямоугольном треугольнике ADC катеты AC=3; CD=3/2. Чтобы упростить вычисления, рассмотрим подобный ему треугольник A'D'C' с катетами A'C'=2 и C'D'=1 и гипотенузой A'D'=корень из 5. Интересующий нас угол, равный половине арксинуса 4/5 - это угол A' этого треугольника, а второй острый угол равен арктангенсу 2. Поэтому
ответ: 0,2