С! существуют ли числа альфа, бета, гамма, для которых: sin альфа =-0,5 , cos бета= корень из 3, tg гамма=-2,5 напишите максимально подробно, мне важно понять ход решения. заранее )

AsunaUmi AsunaUmi    2   01.07.2019 09:50    9

Ответы
Мы знаем, что sin и cos может быть только в промежутке от -1 до 1 включительно.
sin альфа =-0,5 - число альфа существует, так как -0,5 входит в заданный промежуток.
cos бетта=√3 - числа бетта не существует, так как √3 больше 1
Тангенс не имеет промежутков. Он может быть любым числом. Поэтому, число гамма сущестует.
:)
ПОКАЗАТЬ ОТВЕТЫ
valerapolnikov2 valerapolnikov2  02.10.2020 17:22
Синус любого угла \alpha должен удовлетворять -1\leq \sin \alpha \leq 1
по услови. sin a = -0,5, значит такой угол существует

с косинусом тоже самое. косинус любого угла должен удовлетворять -1 \leq \cos \beta \leq 1

корень из 3 больше 1, значит не попадает в область допустимых значений косинуса, поэтому такого угла нет

значения тангенса может быть любым числом из R, поэтому угол гамма, для которого tg гамма = -2,5 ceotcndetn
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Алгебра