Решит тригонометрическое уравнение:

mihscka0605 mihscka0605    1   12.07.2019 00:00    0

Ответы
Nqva Nqva  18.09.2020 01:53
sin(3x- \frac{ \pi }{4} )=- \frac{ \sqrt{2} }{2} \\ \\ 3x- \frac{ \pi }{4}=(-1)^karcsin(-\frac{ \sqrt{2} }{2})+ \pi k,k\inZ \\ \\ 3x=(-1)^k\cdot (-\frac{ \pi }{4})+ \frac{ \pi }{4}+ \pi k,k\inZ \\ \\ 3x=(-1)^{k+1}\cdot (\frac{ \pi }{4})+ \frac{ \pi }{4}+ \pi k,k\inZ \\ \\ x=(-1)^{k+1}\cdot (\frac{ \pi }{12})+ \frac{ \pi }{12}+ \frac{ \pi }{3} k,k\inZ

При k=2n
x=(-1)^{2n+1}\cdot (\frac{ \pi }{12})+ \frac{ \pi }{12}+ \frac{ \pi }{3} 2n, n\in Z\Rightarrow x= \frac{2 \pi n}{3}, n\in Z
При k=2n+1
x=(-1)^{2n+2}\cdot (\frac{ \pi }{12})+ \frac{ \pi }{12}+ \frac{ \pi }{3} (2n+1), n\in Z\Rightarrow x=\frac{2 \pi }{12}+ \frac{ 2\pi }{3} n+\frac{ \pi }{3} , n\in Z \\ \\ x=\frac{ \pi }{2}+ \frac{ 2\pi }{3} n, n\in Z \\ \\

ответ.x= \frac{2 \pi n}{3}, n\in Z 
 \\ \\ x=-\frac{ \pi }{6}+ \frac{ 2\pi }{3} n, n\in Z
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Алгебра