Решить систему логарифмических уравнений. повышенной сложности, 11 класс.

Lol23212 Lol23212    3   03.09.2019 11:50    0

Ответы
Маша20041124 Маша20041124  06.10.2020 14:39
Для начала заметим, что в первом уравнении системы обе части строго положительны, поскольку степень положительного числа - всегда число положительное, что мы и видим. Значит, я могу прологарифмировать обе части данного равенства.
Со вторым равенством поступим аналогично. Почему же здесь обе части положительны? Это происходит вследствие того, что x и y всегда положительны(поскольку иначе быть не может из-за того, что они входят под знаком логарифма в первом равенстве). Значит, основания степеней положительны, а потому, и степени положительны. Поэтому имеем право прологарифмировать обе части. Сделаем это. При этом будем использовать свойства логарифмов.

\left \{ {{lg 5^{lg x} = lg 3^{lg y} } \atop {lg (3x)^{lg 3} = lg (5y)^{lg 5} }} \right. \\ \left \{ {{lg 5* lg x = lg 3 * lgy} \atop {lg3 * lg(3x) = lg5 * lg(5y)}} \right.
Напомню, что в процессе мы использовали то, что степень выражения под логарифмом я могу спустить и сделать его множителем.

Теперь введём замену переменных. Пусть lg (3x) = u, lg(5y) = v. Выразим сами логарифмы lg x и lg y через эти переменные. Для этого используем правило логарифма произведения:
lg(3x) = lg3 + lg x, откуда lg x = lg(3x) - lg3 = u - lg3
Аналогично,
lg(5y) = lg5 + lg y, откуда lg y = lg(5y) - lg 5 = v - lg5
Теперь подставляем это в нашу систему:

\left \{ {{lg5*(u - lg3) = lg3*(v - lg5)} \atop {lg3 * u = lg5 * v}} \right.
Теперь решаем эту систему. Она заметно проще предыдущей. Как решаем? Обычным путём выражения одной переменной через другую. Допустим, выразим u через v из второго уравнения и подставим в первое.
u = \frac{v * lg5}{lg3}

Далее производим подстановочку в первое уравнение, которое упрощаем обычными средствами:
lg 5 * ( \frac{vlg5}{lg3} - lg3) = lg3 * (v - lg5) \\ lg5 * \frac{vlg5 - lg^{2}3 }{lg3} = vlg3 - lg3 * lg5 \\ lg5 * (vlg5 - lg^{2}3) = v lg^{2} 3 - lg^{2} 3 * lg5 \\ v lg^{2} 5 - lg^{2}3 * lg5 = v lg^{2} 3 - lg^{2} 3 * lg5 \\ v( lg^{2} 5 - lg^{2} 3) = 0 \\ v = 0

Сразу находим, что и u = 0.
Далее возвращаемся к обычным переменным:
lg(3x) = 0, откуда 3x = 1, x = 1/3 и
lg(5y) = 0, откуда 5y = 1, y = 1/5

Таким образом, решением системы является пара ( \frac{1}{3} , \frac{1}{5} )
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Алгебра