Решить производную функции f(x)=ln ctg x

korzina284 korzina284    3   27.06.2019 04:00    0

Ответы
theslomsmon theslomsmon  21.07.2020 18:53
F(x) = ln(ctg x)
f'(x) = (1/ctg x)·(-1/sin²x) = -sin x/(cos x ·sin²x) = -1/(cos x · sin x) = -2/sin 2x
ПОКАЗАТЬ ОТВЕТЫ
lecsika lecsika  21.07.2020 18:53
Ln(x)=1/x

f"(x)=ln(ctgx)=1/ctgx × (ctgx)"= 1/ctgx × -1/sin²x=sin/cos× -1/sin²x=(синусы сокращаем и получается =-1/cosx*sinx=-1/2sin2x÷2=-2/2sin2x=-1/sin2x
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Алгебра