Решить. № 1. вычислить: 1) cos ( 6 arccos √2 / 2 ) = 2) cos ( 3 arccos 1 / 2 ) = 3) sin ( 4 arccos 1 / 2 ) = 4) sin ( 5 arccos 0 ) = 5) tg ( 2 arccos √3 / 2 ) = 6) tg ( 3 arccos √2 / 2 ) = № 2. решить уравнение: 1) cos x = 1 / 3 2) cos x = 3 / 4 3) cos x = - 0,3 4) cos x = - 0,2 № 3. вычислить: 1) cos ( arccos 0,2 ) = 2) cos ( arccos ( - 2 / 3 ) ) = 3) cos ( π + arccos 3 / 4 ) 4) cos ( π - arccos 0,3) 5) sin ( π / 2 + arccos 1 / √3 ) 6) sin ( π / 2 - arccos √3 / 3 )
№ 1. Вычислить:
1) cos ( 6 arccos √2 / 2 ) = cos (6 * pi/4) = cos(3*pi/2) =0
2) cos ( 3 arccos 1 / 2 ) = cos (3 * pi/3) = cos (pi) = -1
3) sin ( 4 arccos 1 / 2 ) = sin (4 * pi/3) = sin (pi + pi/3)= - sin( pi/3) = - √3 / 2
4) sin ( 5 arccos 0 ) = sin (5 * pi/2) = 1
5) tg ( 2 arccos √3 / 2 ) = tg ( 2 * pi/6) = tg (pi/3) = √3
6) tg ( 3 arccos √2 / 2 ) = tg ( 3 * pi/4) = tg ( pi- pi/4) = - tg ( pi/4) = - 1
№ 3. Вычислить:
1) cos ( arccos 0,2 ) = 0,2
2) cos ( arccos ( - 2 / 3 ) ) = cos ( π - arccos ( 2 / 3 ) ) = - cos ( arccos ( 2 / 3 ) ) = -2 / 3
3) cos ( π + arccos 3 / 4 ) = - cos ( arccos 3 / 4 ) = - 3 / 4
4) cos ( π - arccos 0,3) = - cos ( arccos 0,3) = - 0,3
5) sin ( π / 2 + arccos 1 / √3 ) = cos ( arccos 1 / √3 ) = 1 / √3
6) sin ( π / 2 - arccos √3 / 3 ) = cos ( arccos √3 / 3 ) = √3 / 3