Реши квадратное уравнение 2(4x−9)2−9(4x−9)+4=0

(первым вводи больший корень):
x1=___; x2= ___;
.

Дополнительный во какой метод рациональнее использовать?

Метод введения новой переменной
Разложение на множители
Раскрытие скобок
Вынесение за скобку

vakumm765 vakumm765    2   12.03.2020 08:32    0

Ответы
irochka320969 irochka320969  11.10.2020 21:18

\displaystyle \tt 2(4x-9)^2-9(4x-9)+4=0\\\displaystyle \tt 2(4x-9)^2-(4x-9)-8(4x-9)+4=0\\\displaystyle \tt (4x-9)(2(4x-9)-1)-4(2(4x-9)-1)=0\\\displaystyle \tt (2(4x-9)-1)(4x-9-4)=0\\\displaystyle \tt (8x-18-1)(4x-13)=0\\\displaystyle \tt (8x-19)(4x-13)=0\\\\ \displaystyle \tt 8x-19=0\\\displaystyle \tt 8x=19\\\displaystyle \tt x=19\div8\\\displaystyle \tt \bold{x_1=2,375}\\\\\displaystyle \tt 4x-13=0\\\displaystyle \tt 4x=13\\\displaystyle \tt x=13\div4\\\displaystyle \tt \bold{x_2=3,25}

ответ: \displaystyle \tt x_1=2,375;\: \: x_2=3,25

ответ на вопрос:

Я считаю, что здесь удобнее использовать метод вынесения общего множителя за скобки.

ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Алгебра