Расстояние между двумя пристанями по реке равно 48 км.
Это расстояние теплоход проплывает по течению реки за 2 ч., а против течения — за 3 ч. Найди собственную скорость теплохода и скорость течения реки.
ответ: собственная скорость теплохода —
км/ч,
а скорость течения реки —
км/ч.

qwertyytrewq0192 qwertyytrewq0192    1   13.05.2020 10:52    1

Ответы
Ulia1090210 Ulia1090210  14.10.2020 16:11

20 (км/час) - собственная скорость теплохода

4 (км/час) - скорость течения реки

Объяснение:

Расстояние между двумя пристанями по реке равно 48 км.

Это расстояние теплоход проплывает по течению реки за 2 ч., а против течения — за 3 ч. Найди собственную скорость теплохода и скорость течения реки.

х - собственная скорость теплохода

у - скорость течения реки

(х+у) - скорость теплохода по течению

(х-у) - скорость теплохода против течения

Составляем систему уравнений согласно условию задачи:

Формула движения: S=v*t

S - расстояние            v - скорость             t - время

(х+у)*2=48

(х-у)*3=48

Раскроем скобки:

2х+2у=48

3х-3у=48

Разделим первое уравнение на 2, второе на 3 для удобства вычислений:

х+у=24

х-у=16

Выразим х через у в первом уравнении, подставим выражение во второе уравнение и вычислим у:

х=24-у

24-у-у=16

-2у=16-24

-2у= -8

у= -8/-2

у=4 (км/час) - скорость течения реки

х=24-у

х=24-4

х=20 (км/час) - собственная скорость теплохода

Проверка:

24*2=48

16*3=48, верно.

ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Алгебра