При каких значениях параметра a функция

g(x)=13x3+(a+2)x2+(a2+4a−12)x−24
имеет экстремальные точки, принадлежащие промежутку [−2,9] ?

найдите минимальное допустимое значение параметра a, при котором a соответствует условию.

даша3643 даша3643    1   25.10.2019 18:15    2

Ответы
katyayatakozwmp5 katyayatakozwmp5  10.10.2020 09:39

Объяснение:

Найдем производную и приравняем к 0.

g'(x) = 13*3x^2 + 2(a+2)x + (a^2+4a-12) = 0

D/4 = (a+2)^2 - 39(a^2+4a-12) = a^2+4a+4-39a^2-156a+468

D/4 = -38a^2 - 152a + 472 > 0

38a^2 + 152a - 472 < 0

19a^2 + 76a - 236 < 0

D/4 = 38^2 + 19*236 = 5928

a1 = (-38 - √5928)/19 ≈ -6,05

a2 = (-38 + √5928)/19 ≈ 2,05

Нам нужно, чтобы было x1 >= -2; x2 <= 9

x1 = [-a-2 - √(-38a^2-152a+472)]/39 >= -2

x2 = [-a-2 + √(-38a^2-152a+472)]/39 <= 9

Осталось решить эти два неравенства, с учётом области определения

а € ((-38-√5928)/19; (-38+√5928)/19)

ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Алгебра