Объяснение:
S=a×b
Пусть сторона а — х
Пусть сторона b — x+10
Выходит:
(x+10)×x = 675
x^2+10x= 675
x^2+10x–675=0
D= 100+2700=2800 √2800 = 20√7
x1= (-10+20√7)÷2 = (2(-5+10√7))÷2 (2-ки убираем) = -5+10√7
х2= (-10–20√7)÷2 = (2(-5–10√7))÷2 (2-ки убираем) = -5–10√7 — не подходит ибо -5–10√7 <0
ответ -5+10√7
Объяснение:
S=a×b
Пусть сторона а — х
Пусть сторона b — x+10
Выходит:
(x+10)×x = 675
x^2+10x= 675
x^2+10x–675=0
D= 100+2700=2800 √2800 = 20√7
x1= (-10+20√7)÷2 = (2(-5+10√7))÷2 (2-ки убираем) = -5+10√7
х2= (-10–20√7)÷2 = (2(-5–10√7))÷2 (2-ки убираем) = -5–10√7 — не подходит ибо -5–10√7 <0
ответ -5+10√7