Очень нужна
2х^2+7х+5>0.
(x-2)^2(x^2+6x-9)<0
x^2-5x+4/x^3-64>0
(x-2)(2+x)(5-x)<=0

zzzzzaaaaatttttiiii zzzzzaaaaatttttiiii    3   25.11.2020 12:15    1

Ответы
VERAVERAVERAVERA123 VERAVERAVERAVERA123  25.12.2020 12:22

Объяснение:

1). (x+3)(2-x)/x+6≥0 Умножим обе стороны неравенства на x+6 и получим (x+3)(2-x)≥0. Отсюда (x+3)≥0 и (2-x)≥0. Тогда x≥-3 и x≤2

2). 2х²+7х+5>0 Приравняем данное неравенство к равенству.

2х²+7х+5 = 0

D=-7²-4·2·5 = 49-40 = √9 = 3²

x1= (-7+3)/2·2 = -4/4 = -1

x2= (-7-3)/4 = - 2,5

3). (x-2)²(x²+6x-9)<0

(x-2)²<0 и (x²+6x-9)<0

Решим сначала (x-2)²<0

= x²-2·2·x+2²<0 = x²-4x+4<0 Приравняем данное неравенство к нолю и получим x²-4x+4=0

D=-4+²-4·1·4=16-16+ = √0 = 0

x1 = (4+0)/2·1= 4/2 = 2

x2 = (4-0)/2·1= 4/2 = 2

Теперь решим (x²+6x-9)<0. Приравняем данное неравенство к нолю и получим x²+6x-9=0

D= 6²-4·1·(-9) = 36+36 = √72

x1 = (-6+√72)/2 = -3+(√72/2)

x2 = (-6-√72)/2 = -3-(√72/2)        

4). x²-5x+4/x³-64>0 Умножим обе стороны неравенства на x³-64  и получим: x²-5x+4>0. Приравняем данное неравенство к нолю.

x²-5x+4=0

D=-5²-4·1·4 = 25-16 = √9 = 3²

x1= (5+3)0/2= 8/2= 4

x2= (5-3)/2 = 2/2 = 1

5). (x-2)(2+x)(5-x)≤0 Отсюда (x-2)≤0 (2+x)≤0 (5-x)≤0  

Тогда: x≤2, x≤-2 и x≥5

ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Алгебра