(1/cos^2x)+(1/cosx)=2 Приводим к общему знаменателю, для этого 2 слагаемое левой части уравнения умножаем на cosx: (1/cos^2x)+(cosx/cos^2x)=2 1+cosx/cos^2x=2 Для того чтобы избавиться от знаменателя и привести уравнение к линейному виду умножаем на cos^2x, получаем: 1+cosx=2cos^2x 2cos^2x-cosx-1=0 Пусть cosx=t, тогда получаем следующее квадратное уравнение: 2t^2-t-1=0 Далее решаем квадратное уравнение: находим корни по теореме Виета: 2-1-1=0 => t(1)=1, t(2)=-1/2 Так как t=cosx, то: 1) cosx=1 2)cosx=-1/2 x=2n x=+-2/3+2n
Приводим к общему знаменателю, для этого 2 слагаемое левой части уравнения умножаем на cosx:
(1/cos^2x)+(cosx/cos^2x)=2
1+cosx/cos^2x=2
Для того чтобы избавиться от знаменателя и привести уравнение к линейному виду умножаем на cos^2x, получаем:
1+cosx=2cos^2x
2cos^2x-cosx-1=0
Пусть cosx=t, тогда получаем следующее квадратное уравнение:
2t^2-t-1=0
Далее решаем квадратное уравнение: находим корни по теореме Виета:
2-1-1=0 => t(1)=1, t(2)=-1/2
Так как t=cosx, то:
1) cosx=1 2)cosx=-1/2
x=2n x=+-2/3+2n