Найти трёхзначное число, если сумма его цифр равна 9, и оно равно 36/47 числа, записанного теми же цифрами но в обратном порядке

rezaev1 rezaev1    3   12.08.2019 16:30    13

Ответы
eledzheev eledzheev  31.08.2020 14:47
Пусть дано трехзначное число, в котором x - число сотен, y - число десятков, z - число единиц.
Получается число равно (100x+10y+z).
Сумма цифр равна 9 (по условию):
x+y+z=9
Оно равно 36/47 числа, записанного теми же цифрами, но в обратном порядке:
100x+10y+z= \frac{36(100z+10y+x)}{47}
4664x+110y-3553z=0
\left \{ {{4664x+110y-3553z=0} \atop {x+y+z=9}} \right.
x=9-y-z
41976-4664y-4664z+110y-3553z=0
41976-4554y-8217z=0
4554y+8217z=41976
так как y и z - цифры трехзначного числа, то они целые.
y+ \frac{83}{46} z= \frac{212}{23}
подбором определили что z=4, y=2
x=9-4-2=3
ответ: 324
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Алгебра