Найти точку локального экстремума функции z=f(х; у) z=х^2+(y-1)^2

megamozg40 megamozg40    3   19.05.2019 03:00    0

Ответы
aibergenova198 aibergenova198  12.06.2020 08:11

z=x^2+(y-1)^2=x^2+y^2-2y+1 \\ z'_x=(x^2+y^2-2y+1)'_x=2x \\ z'_y=(x^2+y^2-2y+1)'_y=2y-2 \\ \\ z'_x=0\ \ \ \ \ \ z'_y=0 \\ \left \{ {{2x=0} \atop {2y-2=0}} \right \\ \left \{ {{x=0} \atop {y=1}} \right \\ M(0;1) \\ \\ z''_{xx}=(2x)'_x=2 \\ z''_{xy}=(2x)'_y=0 \\ z''_{yy}=(2y-2)'_y=2 \\ \\ z''_{xx}(M)=2 \\ z''_{xy}(M)=0 \\ z''_{yy}(M)=2 \\ \\ A=2;\ \ B=0;\ \ C=2 \\ A0 \\ \Delta=AC-B^2=2*2-0^2=40 \\ z(M)=0^2+(1-1)^2=0

 

В точке M локальный минимум

ПОКАЗАТЬ ОТВЕТЫ
rezistol228 rezistol228  12.06.2020 08:11

 

 

dz/dx=2x=0   х=0
dz/dy=2(y-1)=0  y=1
имеем точку (0;1)
d^z/dx^=2=A
d^z/dy^=2=c
d^z/dxdy=0=B
AC=4>0
т.к. A>0  то в точке имеем локальный минимум
z=0.

ПОКАЗАТЬ ОТВЕТЫ