Найти общее решение дифференциального уравнения: 2xy*dy+dx=y^2*dx

spacgumenmari1 spacgumenmari1    2   18.08.2019 19:50    0

Ответы
tryx3 tryx3  14.08.2020 16:22
2xydy+dx=y²dx
2xydy=y²dx-dx
2xydy=(y²-1)dx
dy *2y/(y²-1)=dx/x
переменные разделились, можно интегрировать независимо
∫2ydy/(y²-1)=∫dx/x
∫2ydy/(y²-1)=∫dy²/(y²-1)=∫d(y²-1)/(y²-1)=ln|y²-1| +C
∫dx/x=ln|x|+C

ln|y²-1|=ln|x|+C
ln|y²-1|=ln|Cx|
y²-1=Сх
y=√(Cx+1)
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Алгебра