X-a²+4a-2-(x-a²+2a+3)=2a-5. То бишь имеем: |x-a²+4a-2|+|x-a²+2a+3|=x-a²+4a-2-(x-a²+2a+3) Отсюда получаем: x-a²+2a+3<=0<=x-a²+4a-2 (действительно, когда еще сумма модулей будет давать разность подмодульных выражений?) Значит a²-4a+2<=x<=a²-2a-3. Для того чтобы уравнение имело хотя бы один корень на отрезке [5; 23] необходимо и достаточно: {a²-4a+2<=a²-2a-3 {a²-4a+2<=23 {a²-2a-3>=5 Решение системы: [4; 7]
|x-a²+4a-2|+|x-a²+2a+3|=x-a²+4a-2-(x-a²+2a+3)
Отсюда получаем: x-a²+2a+3<=0<=x-a²+4a-2 (действительно, когда еще сумма модулей будет давать разность подмодульных выражений?)
Значит a²-4a+2<=x<=a²-2a-3. Для того чтобы уравнение имело хотя бы один корень на отрезке [5; 23] необходимо и достаточно:
{a²-4a+2<=a²-2a-3
{a²-4a+2<=23
{a²-2a-3>=5
Решение системы: [4; 7]