Найдите все значения параметра а, при каждом из которых уравнение |x-a²+4a-2|+|x-a²+2a+3|=2a-5 имеет хотя бы один корень на отрезке [5; 23].

DarkPear DarkPear    2   31.07.2019 08:50    1

Ответы
baxtiyorova2001 baxtiyorova2001  25.08.2020 17:14
X-a²+4a-2-(x-a²+2a+3)=2a-5. То бишь имеем:
|x-a²+4a-2|+|x-a²+2a+3|=x-a²+4a-2-(x-a²+2a+3)
Отсюда получаем: x-a²+2a+3<=0<=x-a²+4a-2 (действительно, когда еще сумма модулей будет давать разность подмодульных выражений?)
Значит a²-4a+2<=x<=a²-2a-3. Для того чтобы уравнение имело хотя бы один корень на отрезке [5; 23] необходимо и достаточно:
{a²-4a+2<=a²-2a-3
{a²-4a+2<=23
{a²-2a-3>=5
Решение системы: [4; 7]
ПОКАЗАТЬ ОТВЕТЫ