Рассмотрим функцию . Её график представляет собой некоторую бесконечную ломаную, состоящую из частей прямых с разным углом наклона.
Даже если модули и раскроются так, чтобы перед иксами везде был плюс (получится 8x), то угол наклона всё равно будет зависеть от того, как раскроется модуль , то есть при x ≥ -1 8x-10x = -2x — функция убывает; при x < -1 8x+10x = 18x — функция возрастает. Так как больше 8x мы получить не можем, x = -1 — точка максимума этой функции. Значит, это уравнение (f(x) = 0) имеет хотя бы одно решение, если
Рассмотрим функцию . Её график представляет собой некоторую бесконечную ломаную, состоящую из частей прямых с разным углом наклона.
Даже если модули и раскроются так, чтобы перед иксами везде был плюс (получится 8x), то угол наклона всё равно будет зависеть от того, как раскроется модуль , то есть при x ≥ -1 8x-10x = -2x — функция убывает; при x < -1 8x+10x = 18x — функция возрастает. Так как больше 8x мы получить не можем, x = -1 — точка максимума этой функции. Значит, это уравнение (f(x) = 0) имеет хотя бы одно решение, если
ответ: