S=b₁/(1-q)=243 ⇒
b₁=243*(1-q)
b₁+b₁q+b₁q²=b₁*(1+q+q²)=171 ⇒ b₁=171/(1+q+q²)
243*(1-q)=171/(1+q+q²)
(1-q)*(1+q+q²)=171/243
-(q-1)*(q²+q+1)=19/27 |×(-1)
(q-1)*(q²+q+1)=-19/27
q³-1=-19/27
q³=1-(19/27)=8/27
q=∛(8/27)=∛(2³/3³)=∛(2/3)³=2/3. ⇒
b₁=243*(1-(2/3))=243*(1/3)=81.
ответ: b₁=81.
b1(1+q+q^2)=171
S=b1/1-q
b1/1-q=243
b1=243×(1-q)
243×(1-q)×(q^2+q+1)=171
1^3-q^3=171/243
1-q^3=19/27
q^3=1-19/27=8/27
q=2/3
b1=243*(1-q)=243*(1-2/3)=243*1/3=81
S=b₁/(1-q)=243 ⇒
b₁=243*(1-q)
b₁+b₁q+b₁q²=b₁*(1+q+q²)=171 ⇒ b₁=171/(1+q+q²)
243*(1-q)=171/(1+q+q²)
(1-q)*(1+q+q²)=171/243
-(q-1)*(q²+q+1)=19/27 |×(-1)
(q-1)*(q²+q+1)=-19/27
q³-1=-19/27
q³=1-(19/27)=8/27
q=∛(8/27)=∛(2³/3³)=∛(2/3)³=2/3. ⇒
b₁=243*(1-(2/3))=243*(1/3)=81.
ответ: b₁=81.