Найдите наименьшее и наибольшее значения функции f(x)=|x(6−x)| на отрезке [7;9].​

Legend1111111 Legend1111111    1   19.06.2021 17:41    0

Ответы
Настюшкаvovk Настюшкаvovk  19.07.2021 18:19

x(6 – x) = 0 ⇒ x₁ = 0, x₂ = 6

Все рассуждения касаются только отрезка x ∈ [7; 9]. На этом отрезке выражение под знаком модуля x(6 – x) отрицательно, поэтому f(x) = x(x – 6).

x(x – 6) – парабола, ветви направлены вверх. Корни x₁ = 0, x₂ = 6 находятся слева от левой границы отрезка, поэтому на указанном отрезке функция f(x) монотонно возрастает.

Наименьшее значение функции достигается в точке x = 7 и составляет f(7) = 7(7 – 6) = 7.

Наибольшее значение функции достигается в точке x = 9 и составляет f(9) = 9(9 – 6) = 27.


Найдите наименьшее и наибольшее значения функции f(x)=|x(6−x)| на отрезке [7;9].​
ПОКАЗАТЬ ОТВЕТЫ