Найдите наибольшее и наименьшее значения функции f(x) = х^3- х^2 - х+2 на отрезке [0; 1,5].

kymbatbadagulovа kymbatbadagulovа    1   25.09.2019 10:50    1

Ответы
нурсула1 нурсула1  08.10.2020 18:11
Для начала найдите производную: f'(x) = 3x^2 - 2x - 1
Далее приравнять к нулю: 3x^2 - 2x - 1 = 0
D = 4 + 12 = 16
X1 = (2-4)/6 = -1/3 лишнее так как не входит в промежуток [0 ; 1,5]
X2 = (2+4)/6 = 1

Мы имеем 3 точки: 0 ; 1 ; 1,5

Подставим каждую точку в уравнение f(x) = х^3- х^2 - х+2.
f(0) = 2
f(1) = 1
f(1,5) = 1,625

Значит, функция принимает наибольшее значение при х = 0
наименьшее при х = 1
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Алгебра