Найдите наибольшее целое значение х, при котором выражение (5х2+80)/(х2 - 9х + 8) отрицательно.

muroslavka2003 muroslavka2003    2   07.07.2019 00:30    5

Ответы
Рыжая111111 Рыжая111111  30.07.2020 01:54
По теореме Виетта найдём,что корни квадратного уравнения в знаменателе 8 и 1,то есть,получаем выражение и сравниваем его с нулем 5х^2+80(/х-1)(х-8)<0,откуда узнаём,что наибольшее целое значение,при котором выражение строго меньше нуля-7.ответ:7
ПОКАЗАТЬ ОТВЕТЫ
kk64 kk64  20.01.2024 18:04
Хорошо, давай разбираться!

Для начала, давай выясним какое значение х делает выражение ноль. Это мы сделаем, приравняв выражение к нулю и решив полученное уравнение:

5х^2 + 80 = 0

Сначала вынесем общий множитель:

5(х^2 + 16) = 0

Затем разделим обе части уравнения на 5:

х^2 + 16 = 0

Теперь вычтем 16 из обеих частей уравнения:

х^2 = -16

На этом этапе мы получили, что выражение х^2 равно отрицательному числу. Обрати внимание, что в действительных числах квадрат любого числа всегда положителен, поэтому уравнение х^2 = -16 не имеет решений в действительных числах.

Теперь давай рассмотрим дробь (х^2 - 9х + 8). Мы знаем, что х^2 = -16, поэтому можем подставить это значение вместо х в дробь:

(х^2 - 9х + 8) = (-16 - 9х + 8) = (-16 + 8 - 9х) = (-8 - 9х)

Теперь рассмотрим выражение (5х^2 + 80). Мы знаем, что х^2 = -16, поэтому можем подставить это значение вместо х в данное выражение:

(5х^2 + 80) = (5(-16) + 80) = (-80 + 80) = 0

Проанализируем значение выражения (5х^2 + 80)/(х^2 - 9х + 8). Мы видим, что числитель равен 0, а знаменатель равен (-8 - 9х). Так как числитель равен 0, то значение всего выражения равно 0.

Теперь давай проверим, что же происходит с выражением при значениях х, которые больше и меньше наших нулей. Рассмотрим два примера: х = -17 и х = -15.

При х = -17:
(5х^2 + 80)/(х^2 - 9х + 8) = (5(-17)^2 + 80)/((-8 - 9(-17)) = (5*289 + 80)/(-8 + 153) = (1445 + 80)/145 = 1525/145 ≈ 10.52

При х = -15:
(5х^2 + 80)/(х^2 - 9х + 8) = (5(-15)^2 + 80)/((-8 - 9(-15)) = (5*225 + 80)/(-8 + 135) = (1125 + 80)/127 = 1205/127 ≈ 9.49

Из приведенных вычислений наблюдаем, что выражение (5х^2 + 80)/(х^2 - 9х + 8) положительное при х = -17 и х = -15. Поэтому не существует целочисленного значения х, при котором данное выражение отрицательно.

Ответ: не существует целочисленного значения х, при котором выражение (5х^2 + 80)/(х^2 - 9х + 8) отрицательно.
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Алгебра