Приведем очень простой пример, показывающий, как вычисляются дисперсия и стандартное отклонение. Допустим, что вам представилась возможность сыграть в следующую игру. Сначала вы инвестируете 100 уел. ед. Затем подбрасываете две монеты. Если выпадет “орел” — прибавляете к первоначальной сумме 20%, если “решка” — отнимаете 10%. Очевидно, существует четыре вероятных результата: “орел” + “орел”: +40%;
“орел” + “решка”: +10%;
“решка” + “орел”: +10%;
“решка” + “решка”: -20%.
Составим таблицу распределения частот:
X
+40
+10
-20
wt.
1
1
1
4
2
4
Относительная частота равна 1 к 4 (или 0,25), что вы получите 40%, равна 2 к 4 (или 0,5), что вы получите 10%, и 1 к 4 (или 0,25), что вы потеряете 20%. Ожидаемая доходность игры, следовательно, представляет собой средневзвешенную значений фактической доходности
Приведем очень простой пример, показывающий, как вычисляются дисперсия и стандартное отклонение. Допустим, что вам представилась возможность сыграть в следующую игру. Сначала вы инвестируете 100 уел. ед. Затем подбрасываете две монеты. Если выпадет “орел” — прибавляете к первоначальной сумме 20%, если “решка” — отнимаете 10%. Очевидно, существует четыре вероятных результата: “орел” + “орел”: +40%;
“орел” + “решка”: +10%;
“решка” + “орел”: +10%;
“решка” + “решка”: -20%.
Составим таблицу распределения частот:
X
+40
+10
-20
wt.
1
1
1
4
2
4
Относительная частота равна 1 к 4 (или 0,25), что вы получите 40%, равна 2 к 4 (или 0,5), что вы получите 10%, и 1 к 4 (или 0,25), что вы потеряете 20%. Ожидаемая доходность игры, следовательно, представляет собой средневзвешенную значений фактической доходности
Объяснение: