Найдите а1 и n если :
1) d=3 an=59 sn=603
2) d=-5 an=-8 sn=30
3) d=2 an=49 sn=702
4) d=-7 an=-18 sn=-20

def04565 def04565    1   17.11.2019 14:18    25

Ответы
sandershvnz sandershvnz  10.10.2020 13:51

Объяснение:

Задача 1.

a1 = an - (n-1)*d = 59 - 3*n + 3 = 62 -3*n

Sn = (a1 + an)*(n/2) = 603

(62 - 3*n + 59)*n = 2*603 = 1206

(121 - 3*n)*n = 1206

- 3*n² + 121*n - 1206 = 0 a*x² + b*x + c = 0

Вычисляем дискриминант - D.

D = b² - 4*a*c = 121² - 4*(-3)*(-1206) = 169 - дискриминант. √D = 13.

Вычисляем корни уравнения.

n = (-b+√D)/(2*a) = (-121+13)/(2*-3) = -108/-6 = 18 - первый корень

x₂ = (-b-√D)/(2*a) = (-121-13)/(2*-3) = -134/-6 = 22,33 - второй корень  -нет

n  = 18 - число членов - ответ.

а1 = an - (n-1)*d = 59 - 17*3 = 59 - 51 = 8 - а1 -первый член- ответ

Проверено - правильно.

Задача 2.

a1 = an - (n-1)*d = -8 + 5*n -5 = -13 +5*n

Sn = (-13 + 5*n - 8)*n = 30*2 = 60

5*n² - 11*n - 60 = 0 - НЕ РЕШЕНО.

ЗАДАЧА 3.

а1 = an - (n-1)*d = 49 - (n-1)*2 = 51 - 2*n

Sn = (a1 + an)*(n/2) = 702

(51 - 2*n + 49)*n = 702*2

- 2*n² + 100*n - 1404 = 0 - не решено.

Задача 4.

а1 = an - (n-1)*d = -18 + 7*n -7 = 7*n - 25

Sn = (a1 + an)*(n/2) =

(7*n - 25 -18)*n = -20*2 = -40

7*n² - 43*n + 40 = 0

D = b² - 4*a*c = -43² - 4*(7)*(40) = 729 - дискриминант. √D = 27.

Вычисляем корни уравнения.

n₁ = (-b+√D)/(2*a) = (43+27)/(2*7) = 70/14 = 5 - первый корень

x₂ = (-b-√D)/(2*a) = (43-27)/(2*7) = 16/14 = 1,14 - второй корень - нет

n = 5  - число членов - ответ

а1 = -18 - 4*(-7) = -18 + 28 = 10 - первый член

Проверено - правильно.

ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Алгебра