на рисунке 13.10 изображён параллелограмм ABCD со сторонами AB равно a BC равно B, от которого отсечен другой параллелограмм FBCE, подобный данному. Каким должен быть отрезок BF?
Окружность около параллелограмма можно описать только тогда, когда этот параллелограмм - прямоугольник.
Стороны его попарно равны.
1)
Площадь этого параллелограмма равна произведению сторон. S=3*4=12
Площадь равновеликого квадрата а²=12
а=√12=2√3.
Р/√3=2
2)
Углы ВКА и КАD равны, как накрестлежащие, а углы ВАК и КАD равны по условию. Поэтому треугольник АВК - равнобедренный прямоугольный и его гипотенуза АК=3√2
АК/√2=(3√2)/√2=3
3)
Четырехугольник АКСD - прямоугольная трапеция с высотой=CD=3 и основаниями КС и АD.
Окружность около параллелограмма можно описать только тогда, когда этот параллелограмм - прямоугольник.
Стороны его попарно равны.
1)
Площадь этого параллелограмма равна произведению сторон. S=3*4=12
Площадь равновеликого квадрата а²=12
а=√12=2√3.
Р/√3=2
2)
Углы ВКА и КАD равны, как накрестлежащие, а углы ВАК и КАD равны по условию. Поэтому треугольник АВК - равнобедренный прямоугольный и его гипотенуза АК=3√2
АК/√2=(3√2)/√2=3
3)
Четырехугольник АКСD - прямоугольная трапеция с высотой=CD=3 и основаниями КС и АD.
КС=ВС-ВК=4-3=1
S (АКСD)=CD*(KC+AD):2
S (АКСD)=3*(1+4):2=7,5