На доске записаны 10 последовательных чисел. когда одно из них стерли то сумма девяти оставшихся оказалась равна 2004. какие числа на доске?

Cyxapuk2 Cyxapuk2    1   16.06.2019 13:00    2

Ответы
kovalenkodenis6 kovalenkodenis6  13.07.2020 09:26
Решение Пусть x — наименьшее из написанных чисел. Обозначим через (x + y) вычеркнутое число (0 < y < 9). Тогда x + (x + 1) + (x + 2) + (x + 3) + (x + 4) + (x + 5) + (x + 6) + (x + 7) + (x + 8) + (x + 9) - (x + y) = 2002. Приведём подобные слагаемые: 10x + 45 - x - y = 2002, то есть 9x = 1957 + y. Отсюда 1957 + y делится на 9. Учитывая условие 0 < y < 9, получаем, что y = 5. Значит, x = 1962 : 9 = 218. ответ 218, 219, 220, 221, 222, 224, 225, 226 и 227.
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Алгебра