В первом задании нужно просто подставить координаты точек в уравнение и проверить что получится.
М(-1;1) ⇒ 3×1-2×(-1)-7=0 ⇒ 3+2-7=0 ⇒ -2=0 Но -2 не равно 0, значит точка М(-1;1) не принадлежит графику
N(0;-2) ⇒ 3×(-2)-2×0-7=0 ⇒ -6-7=0 ⇒ -13=0 Но -13 не равно 0, значит точка N(0;-2) не принадлежит графику
Р(0;2) ⇒ 3×2-2×0-7=0 ⇒ 6-7=0 ⇒ -1=0 Но -1 не равно 0, значит точка Р(0;2) не принадлежит графику
Q(1;3) ⇒ 3×3-2×1-7=0 ⇒ 9-2-7=0 ⇒ 0=0 А вот 0 точно равен 0, значит точка Q(1;3) принадлежит графику
Во втором задании нужно найти тангенс угла наклона прямой относительно оси ОХ, так как это и есть тот самый коэффициент к.
Исходя из рисунка мы видим, что катеты треугольника равны 2 и 1,
а тангенс есть отношение противолежащего катета к прилежащему, следовательно tg a=2/1=2 и к=2
В третьем задании можно найти производную данной функции и посмотреть как изменяется скорость данной функции.
Производная будет равна двум, это говорит нам о том, что функция с увеличением х будет принимать все большее и большее значение у, следовательно из отрезка [-1;3] стоит взять цифру 3 (так как эта цифра имеет большее значение среди всех) и подставить в наше уравнение функции
у = 2х-3 ⇒ у(3) = 2×3-3=3 ⇒ 3 есть наибольшее значение функции на отрезке [-1;3]
Объяснение:
В первом задании нужно просто подставить координаты точек в уравнение и проверить что получится.
М(-1;1) ⇒ 3×1-2×(-1)-7=0 ⇒ 3+2-7=0 ⇒ -2=0 Но -2 не равно 0, значит точка М(-1;1) не принадлежит графику
N(0;-2) ⇒ 3×(-2)-2×0-7=0 ⇒ -6-7=0 ⇒ -13=0 Но -13 не равно 0, значит точка N(0;-2) не принадлежит графику
Р(0;2) ⇒ 3×2-2×0-7=0 ⇒ 6-7=0 ⇒ -1=0 Но -1 не равно 0, значит точка Р(0;2) не принадлежит графику
Q(1;3) ⇒ 3×3-2×1-7=0 ⇒ 9-2-7=0 ⇒ 0=0 А вот 0 точно равен 0, значит точка Q(1;3) принадлежит графику
Во втором задании нужно найти тангенс угла наклона прямой относительно оси ОХ, так как это и есть тот самый коэффициент к.
Исходя из рисунка мы видим, что катеты треугольника равны 2 и 1,
а тангенс есть отношение противолежащего катета к прилежащему, следовательно tg a=2/1=2 и к=2
В третьем задании можно найти производную данной функции и посмотреть как изменяется скорость данной функции.
Производная будет равна двум, это говорит нам о том, что функция с увеличением х будет принимать все большее и большее значение у, следовательно из отрезка [-1;3] стоит взять цифру 3 (так как эта цифра имеет большее значение среди всех) и подставить в наше уравнение функции
у = 2х-3 ⇒ у(3) = 2×3-3=3 ⇒ 3 есть наибольшее значение функции на отрезке [-1;3]