Given 3x+y = 12, find the maximum value of x^2 −y^2

Асем1211 Асем1211    1   30.05.2023 13:13    0

Ответы
404ada505 404ada505  30.05.2023 13:14

ответ:  max( x²- y²) = 18   при  3х+у=12  .

Переменные  х  и  у  связаны соотношением   3х+у=12  .

Найти максимальное значение выражения   x²-y²  .

\bf 3x+y=12\ \ \ \Rightarrow \ \ \ y=12-3xx^2-y^2=x^2-(12-3x)^2=x^2-144+72x-9x^2=-8x^2+72x-144  

Найдём максимальное значение выражения  \bf z=-8x^2+72x-144  .

\bf z=-8(x^2-9x+18)\ \ ,\ \ \ z=-8\, (x-6)(x-3)

\bf z'=-8\cdot 2x+72=-8\cdot (2x-9)=0\ \ ,\ \ 2x=9\ \ ,\ \ x=4,5    

В стационарной точке функция  z  будет принимать максимальное значение, так как при переходе через  х = 4,5 знак производной z' меняется с плюса на минус :    + + + + + [4,5 ] - - - - -    \bf x_{max}=4,5  

Подставим значение  х = 4,5 в выражение .

\bf z(4,5)=-8\, (4,5-6)(4,5-3)=-8\cdot (-1,5)\cdot 1,5=18(x^2-y^2)\Big|_{x=4,5}=18              


Given 3x+y = 12, find the maximum value of x^2 −y^2
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Алгебра