Двое трактористов, работая вместе, могут вспахать поле за 6ч. за сколько часов может вспахать это поле каждый тракторист, работая самостоятельно, если одному из них для того, чтобы вспахать 2/3 поля, необходимо на 4ч больше, чем другому, чтобы вспахать 0,2 поля?

MASCAM MASCAM    2   01.07.2019 23:30    3

Ответы
Vanomasssss Vanomasssss  26.07.2020 09:25
Пусть х ч - время 1-го тракториста, у ч - время 2-го тракториста. 1/х пашет за 1 час 1-й тракторист, 1/у - пашет за 1 час 2-й тракторист. 1/х+1/у - пашут вместе за 1 час 1/(1/х+1/у) = 6 ч - вспашут всё поле, работая вместе. (1 уравнение) 2/5 : 1/х час. - время 1-го, за которое он вспашет 2/5 поля. Это на 4 ч больше, чем 1/5 : 1/у час - время 2-го, за которое он вспашет 1/5 поля. Составляем 2-е уравнение 2х/5 - у/5 = 4. Упрощаем каждое и получаем систему уравнений: ху=6(х+у) и 2х-у=20 Из второго у=2х-20, подставляем в первое х(2х-20)=6(х+2х-20) 2х*х-20х-18х+120=0 2х*х-38х+120=0 х*х-19х+60=0 х1=4, х2=15. Подставляе и находим у: у1=-12, у2=10. Первая пара - посторонние корни, т.к. у1 должно быть больше 0. ОТВЕТ: время 1-го тракториста - 15 часов время 2-го тракториста - 10 часов ПРОВЕРКА: 1/(1/15+1/10)=150/25=6 ч, 2/5:1/15=30/5=6 ч., 1/5:1/10=10/5=2 ч. 6>2 на 4 часа.
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Алгебра