через 2 против лежащего ребра куба проведено сечение площадь которого равна 64 корней из 2 см2 найти ребро куба и его диагональ

iceheart1618 iceheart1618    2   19.10.2020 19:43    9

Ответы
890ZLO168 890ZLO168  19.10.2020 20:01

сразу приношу извинения за невозможность нарисовать куб/не работает вложение/, но это совсем не сложно. откройте любой учебник. посмотрите, как он  рисуется. дальше, т.к. сечение соединяет два противолежащих ребра куба,  будет прямоугольником, (доказать легко- два противоположных ребра куба равны и параллельны и ребро куба перпендикулярно стороне, например, основания, т.е. квадрата, лежащего в основании, тогда оно перпендикулярно и  диагонали квадрата - боковой грани по  теореме о трех перпендикулярах. площадь этого сечения 64√2 см², пусть, сторона основания х, тогда диагональ боковой грани х√2 см, т.к. все стороны квадрата х, значит, х*х√2=64√2⇒х=8, значит, ребро куба 8 см, квадрат  диагонали  куба равен сумме квадратов трех его измерений, значит, диагональ куба равна  х√3=8√3/см.

ответ 8 см, 8√3см

ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Алгебра