Большая полуось орбиты марса 1,5 а.е. чему равен звездный период его обращения вокруг солнца

Kot12321 Kot12321    1   13.09.2019 00:20    25

Ответы
diamiss45 diamiss45  07.10.2020 10:45
Третий закон Кеплера гласит - квадраты периодов обращения планет вокруг Солнца относятся, как кубы больших полуосей орбит планет.
Проверим закон Кеплера на планете Земля.
Принято, что расстояние от планета Земля до планеты Солнце равно 1 астрономическая единица (а. е.) и также считают, что Солнце - центр нашей планетарной системы, следовательно оно относительно нас недвижимо и формула (Тз/Тс)²=(Аз/Ас)³ превращается в формулу     (Тз/1)²=(Аз/1)³   ⇒  (Тз)²=(Аз)³   ⇒  Тз=√(Аз)³.
Так как на планете Земля  Аз (период вращения вокруг планеты Солнце) 1 а. е. ⇒   Тз=√1³=1, то есть ≈365 земных дней.
Теперь можно вычислить "звёздный период вращения планеты Марс" вокруг планеты Солнце:
Тм=√(1,5)³≈1,837 земного года≈1,837*365≈671 земной день.
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Алгебра