260. Преобразуем тригонометрическое равенство, используя формулу сокращенного умножения для разности квадратов двух выражений:
x^2 - y^2 = (x + y)(x - y);
cos^4(a) - sin^4(a) = 1/8;
(cos^2(a) + sin^2(a))(cos^2(a) - sin^2(a)) = 1/8.
2. Сумма квадратов функций синус и косинус одного и того же аргумента равна единице:
cos^2(a) + sin^2(a) = 1, отсюда:
sin^2(a) = 1 - cos^2(a).
cos^2(a) - sin^2(a) = 1/8;
cos^2(a) - (1 - cos^2(a)) = 1/8;
2cos^2(a) - 1 = 1/8;
2cos^2(a) = 9/8;
cos^2(a) = 9/16;
cosa = ±3/4.
ответ: ±3/4.
260. Преобразуем тригонометрическое равенство, используя формулу сокращенного умножения для разности квадратов двух выражений:
x^2 - y^2 = (x + y)(x - y);
cos^4(a) - sin^4(a) = 1/8;
(cos^2(a) + sin^2(a))(cos^2(a) - sin^2(a)) = 1/8.
2. Сумма квадратов функций синус и косинус одного и того же аргумента равна единице:
cos^2(a) + sin^2(a) = 1, отсюда:
sin^2(a) = 1 - cos^2(a).
cos^2(a) - sin^2(a) = 1/8;
cos^2(a) - (1 - cos^2(a)) = 1/8;
2cos^2(a) - 1 = 1/8;
2cos^2(a) = 9/8;
cos^2(a) = 9/16;
cosa = ±3/4.
ответ: ±3/4.