20 ! со всеми пояснениями
v^{3}\sqrt{49v^{2} }, где v\geq 0

MGap58 MGap58    2   24.11.2019 19:19    1

Ответы
khludenev99 khludenev99  16.01.2024 20:52
Здравствуй! Рад, что ты обратился ко мне за помощью. Давай разберемся с этим заданием по порядку.

Начнем с выражения v^{3}\sqrt{49v^{2} }. Нам нужно вычислить его значение.

1. Начнем с квадратного корня внутри выражения: \sqrt{49v^{2} }.
Квадратный корень из 49 равен 7, так как 7 * 7 = 49.
Таким образом, \sqrt{49v^{2} } превращается в 7v.

2. Вернемся к начальному выражению v^{3}\sqrt{49v^{2} }.
Возведем 7v в куб, так как у нас есть степень 3 после v.
(7v) * (7v) * (7v) = 343v^3.

Таким образом, исходное выражение v^{3}\sqrt{49v^{2} } превращается в 343v^3.

Ответ: 343v^3
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Алгебра