1. разложите на множители: 2х2 +6х-8 а) (х+3)(х-2) б) 2(х+4)(х-1) в) -(х-2)(х+3) г) (х-1)(х+4) 2. сколько разных корней имеет квадратный трёхчлен: 5х2 -7х+2. а) два б) много в) один г)ни одного 3. сократите дробь: (2(х+4))/(2х²+6х-8) а) 1/(2-х) б) –х+2 в) х-1 г) 1/(х-1) 4. решите уравнение: х4-3х2-4=0. а) -3; 3 б) 2 в) 3 г) -2; 2 5. найдите все значения х, при которых дробь равна 0: (х³-х²-12х)/(х+3). а) -3; 0; 4 б) -1; 0 в )0; 4 г) -1; 0; 5 6. решите уравнение : (2х²-х-1)/(х²+х-2) =1. а) -0,5; 1 б) 1 в) решений нет г) - 1/3 ; 1 7. решите уравнение: 3/(х²+2х+1) + ( 2)/( х²-1) = 1/(х-1) . 8. найдите все корни уравнения (х²-х-6)/х - ( 8х)/( х²-х-6) = 2.
2x²+6x-8=0
x²+3x-4=0
D=3²-4*(-4)=9+16=25=5²
x₁=(-3-5)/2= -4
x₂=(-3+5)/2=1
2x²+6x-8=2(x+4)(x-1)
ответ: Б)
2.
5x²-7x+2=0
D=(-7)² -4*5*2=49-40=9>0
Так как D>0, то квадратный трехчлен имеет два разных корня.
ответ: А)
3.
Разложим знаменатель на множители:
2x²+6x-8=2(x+4)(x-1)
Сокращаем:
[2(x+4)]/[2(x+4)(x-1)]=1/(x-1)
ответ: Г)
4.
Замена переменной:
t=x²
t²=x⁴
t²-3t-4=0
D=(-3)²-4*(-4)=9+16=25=5²
t₁=(3-5)/2= -1 ⇒ x²= -1 ⇒ нет решений
t₂=(3+5)/2=4 ⇒ x²=4 ⇒ x₁=2 и x₂ = -2
ответ: Г)
5.
ОДЗ: х≠ -3
Разложим числитель на множители:
x³-x²-12x=x(x²-x-12)=x(x+3)(x-4)
x²-x-12=0
D=(-1)²-4*(-12)=1+48=49=7²
x₁=(1-7)/2= -3
x₂=(1+7)/2=4
Сокращаем:
[x(x+3)(x-4)]/(x+3) =0
x(x-4)=0
x=0 x-4=0
x=4
ответ: В)
6.
ОДЗ: x²+x-2≠0 ⇒ x≠ -2 и х≠ 1
D=1² -4*(-2)=1+8=9=3²
x₁=(-1-3)/2= -2
x₂=(-1+3)/2=1
2x²-x-1=x²+x-2
2x²-x²-x-x-1+2=0
x²-2x+1=0
(x-1)²=0
x-1=0
x=1 - не подходит по ОДЗ
нет решений
ответ: В)
7.
x²+2x+1=(x+1)²
x²-1=(x-1)(x+1)
ОДЗ: x≠ -1 и x≠1
Общий знаменатель: (x-1)(x+1)²
3(x-1)+2(x+1)=(x+1)²
3x-3+2x+2=x²+2x+1
-x²+5x-2x-1-1=0
-x²+3x-2=0
x²-3x+2=0
По т. Виета:
x₁=1 - не подходит по ОДЗ
x₂=2
ответ: 2.
8.
ОДЗ: х≠0 и x²-x-6≠0 ⇒ x≠ -2 и х≠3
x²-x-6=0
По т. Виета:
x₁=-2
x₂=3
Замена переменной:
t=(x²-x-6)/x
1/t=x/(x²-x-6)
t - (8/t) =2
ОДЗ: t≠0
t² -8=2t
t²-2t-8=0
D=(-2)² -4*(-8)=4+32=36=6²
t₁=(2-6)/2= -2
t₂=(2+6)/2=4
При t= -2
(x²-x-6)/x = -2
x²-x-6= -2x
x²-x+2x-6=0
x²+x-6=0
D=1²-4*(-6)=1+24=25=5²
x₁=(-1-5)/2= -3
x₂=(-1+5)/2=2
При t=4
(x²-x-6)/x=4
x²-x-6=4x
x²-x-4x-6=0
x²-5x-6=0
D=(-5)²-4*(-6)=25+24=49=7²
x₁=(5-7)/2=-1
x₂=(5+7)/2=6
ответ: -3; -1; 2; 6.