1. Найдите промежутки возрастания и убывания:
2.
Найдите стационарные точки:
3. Найдите локальные максимумы и минимумы функции:
P.s Подробное решение.


f (x) = x ^{3} - 12 {x}^{2} - 17x - 23
f(x) = 3 {x}^{2} - 7x + 9
f(x) = x^{4} - 3 {x}^{3} + {x}^{2} + 9

241cool 241cool    2   21.11.2021 19:28    0

Ответы
osipovasashaa osipovasashaa  21.11.2021 19:30

Объяснение:

1. Найдите промежутки возрастания и убывания:

Найдем производную, приравняем к нулю, найдем корни.

Определим знаки производной на промежутках. Если "+", функция возрастает, "-" - убывает.

f(x)=x^3-12x^2-17x-23f'(x)=3x^2-12*2x-17=3x^2-24x-17f'(x)=0;\;\;\;3x^2-24x-17=0x_{1,2}=\frac{24^+_-\sqrt{576+204} }{6}=\frac{24^+_-2\sqrt{195} }{6}=\frac{12^+_-\sqrt{195} }{3} x_1=\frac{12+\sqrt{195} }{3}\approx 8,7;\;\;\;x_2=\frac{12-\sqrt{195} }{3}\approx -0,7

См. рис.

Функция возрастает при х ∈ [-∞; -0,7]∪[8,7; +∞]

или

\displaystyle x\in [- \infty ;\;\frac{12-\sqrt{195} }{3} ]\cup [\frac{12+\sqrt{195} }{3};\;+ \infty ]

Функция убывает при х ∈ [-0,7; 8,7]

или

\displaystyle x\in[\frac{12-\sqrt{195} }{3};\;\frac{12+\sqrt{195} }{3} ]

2. Найдите стационарные точки:

Точки области определения функции, при которых производная функции равна нулю, называются стационарными точками.

\displaystyle f(x)=3x^2-7x+9f'(x)=6x-7f'(x)=0;\;6x-7=0x=\frac{7}{6}x= 1\frac{1}{6}

3. Найдите локальные максимумы и минимумы функции.

Найдем производную, приравняем к нулю, найдем корни.

Определим знаки производной на промежутках. Если производная меняет знак с "+" на "-", то будет точка максимума. Если производная меняет знак с "-" на "+"  - точка минимума.

\displaystyle f(x)=x^4-3x^3+x^2+9f'(x)=4x^3-9x^2+2xf'(x)=0;\;\;\;x(4x^2-9x+2)=0x_1 = 0x_{2,3}=\frac{9^+_-\sqrt{81-32} }{8}=\frac{9^+_-7}{8}x_2=\frac{9+7}{8}=2;\;\;\;x_3=\frac{9-7}{8}=\frac{1}{4}

См. рис.

\displaystyle x_{max}=\frac{1}{4}x_{min}=\{0;\;2\}


1. Найдите промежутки возрастания и убывания: 2.Найдите стационарные точки:3. Найдите локальные макс
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Алгебра