При каком значении a> 0 функция y= имеет наименьшее значение равное -2.24?

HYPE111 HYPE111    1   02.06.2019 09:00    2

Ответы
ромб13 ромб13  03.07.2020 06:54
Только при значении а = 1 функция x^2+3*x+0.01 имеет минимум -2,24.
Точка пересечения графика функции с осью координат Y: График пересекает ось Y, когда x равняется 0: подставляем x=0 в x^2+3*x+0.01.
Результат: y=0.01. Точка: (0, 0.01)
Точки пересечения графика функции с осью координат X: График функции пересекает ось X при y=0, значит нам надо решить уравнение: x^2+3*x+0.01 = 0 Решаем это уравнение и его корни будут точками пересечения с X:
x=-2.99666295470958. Точка: (-2.99666295470958, 0)x=-0.00333704529042345. Точка: (-0.00333704529042345, 0) Экстремумы функции: Для того, чтобы найти экстремумы, нужно решить уравнение y'=0 (производная равна нулю), и корни этого уравнения будут экстремумами данной функции: y'=2*x + 3=0
Решаем это уравнение и его корни будут экстремумами: x=-3/2. Точка: (-3/2, -2.24)
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Алгебра