ответ: y=-2/3*sin(x)+2/9*sin³(x)-5/9.
Пошаговое объяснение:
y'=2*∫sin(x)*cos²(x)*dx=-2*∫cos²(x)*d[cos(x)]=-2/3*cos³(x)+C1, y=-2/3*∫cos³(x)*dx+C1*∫dx=-2/3*∫cos²(x)*cos(x)*dx+C1*∫dx=-2/3*∫[1-sin²(x)]*d[sin(x)]+C1*∫dx=-2/3*∫d[sin(x)]+2/3*∫sin²(x)*d[sin(x)]+C1*∫dx=-2/3*sin(x)+2/9*sin³(x)+C1*x+C2; -5/9=C2, -2/3=-2/3+С1⇒С1=0, y=-2/3*sin(x)+2/9*sin³(x)-5/9.
ответ: y=-2/3*sin(x)+2/9*sin³(x)-5/9.
Пошаговое объяснение:
y'=2*∫sin(x)*cos²(x)*dx=-2*∫cos²(x)*d[cos(x)]=-2/3*cos³(x)+C1, y=-2/3*∫cos³(x)*dx+C1*∫dx=-2/3*∫cos²(x)*cos(x)*dx+C1*∫dx=-2/3*∫[1-sin²(x)]*d[sin(x)]+C1*∫dx=-2/3*∫d[sin(x)]+2/3*∫sin²(x)*d[sin(x)]+C1*∫dx=-2/3*sin(x)+2/9*sin³(x)+C1*x+C2; -5/9=C2, -2/3=-2/3+С1⇒С1=0, y=-2/3*sin(x)+2/9*sin³(x)-5/9.