Знайдіть площу криволінійної трапеції, обмеженої лініями y=6-x^2, у=0, х=1,х=3

pol422 pol422    3   18.09.2019 22:40    0

Ответы
оля27102000 оля27102000  08.10.2020 01:01

у = 6 - x²;  y = 0;  x = 1;  x = 3

6 - x² = 0       ⇒    x₁ = √6;   x₂ = -√6

Ноль функции  x₁ = √6  входит в интервал интегрирования

x₁ ∈ [1; 3]  и разбивает криволинейную трапецию на 2 части : над осью Ох ( на графике залита жёлтым цветом )  и под осью Ох ( на графике залита зелёным цветом ). Общая площадь будет состоять из суммы двух площадей.

1) Площадь ограничена сверху параболой  y = 6 - x²,  снизу осью абсцисс, слева прямой   x = 1, справа нулём функции  x₁ = √6.

\displaystyle S_1=\int\limits^{\sqrt6}_1 {\Big(6-x^2\Big)} \, dx =6x-\dfrac{x^3}3~~\bigg|_1^{\sqrt6}=\\\\=\bigg(6\cdot\sqrt6-\dfrac{6\sqrt6}3\bigg)-\bigg(6\cdot1-\dfrac13\bigg)=\\\\=6\sqrt6-2\sqrt6-6+\dfrac 13\boldsymbol{=4\sqrt6-5\dfrac 23}

2) Площадь ограничена снизу параболой y = 6 - x², сверху осью абсцисс, слева нулём функции x₁ = √6, справа прямой х = 3.

\displaystyle S_2=\int\limits^3_{\sqrt6} {\Big(0-\big(6-x^2\big)\Big)} \, dx=\int\limits^3_{\sqrt6} {\Big(x^2-6\Big)} \, dx =\\\\\\=\dfrac{x^3}3-6x~~\bigg|_{\sqrt6}^3=\Bigg(\dfrac{27}3-6\cdot 3\Bigg)-\Bigg(\dfrac{6\sqrt6}3-6\cdot \sqrt6\Bigg)=\\\\\\=9-18-2\sqrt6+6\sqrt6\boldsymbol{=-9+4\sqrt6}

S=S_1+S_2=4\sqrt6-5\dfrac 23-9+4\sqrt6=8\sqrt6-14\dfrac 23\\\\\boxed{\boldsymbol{S=8\sqrt6-14\dfrac 23\approx4,93}}


Знайдіть площу криволінійної трапеції, обмеженої лініями y=6-x^2, у=0, х=1,х=3
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Математика