Заполните таблицу 17, если f(x) и h(x) многочлены


Заполните таблицу 17, если f(x) и h(x) многочлены

t12345k t12345k    2   23.10.2020 19:57    139

Ответы
федот228 федот228  08.01.2024 20:06
Для решения этой задачи, мы должны использовать определение многочленов и применить его к функции f(x) и h(x).

Многочлен - это математическая функция, которая состоит из суммы произведений переменных (x) и степеней (натуральных чисел). Каждое слагаемое или член многочлена представляет собой произведение коэффициента и степени переменной, например, ax^2, где а - это коэффициент, а х^2 - это степень.

В таблице имеется набор значений для функции f(x) и h(x) при различных значениях переменной x. Наша задача - найти значения функции для данных переменных и записать их в таблицу 17.

Шаги решения:

1. Сначала найдем значения f(x) для заданных x.

a) Для x = -2:
Подставим x = -2 в многочлен f(x):
f(-2) = 3(-2)^2 + 2(-2) + 1 = 3(4) - 4 + 1 = 12 - 4 + 1 = 9

Таким образом, f(-2) = 9.

b) Для x = -1:
Подставим x = -1 в многочлен f(x):
f(-1) = 3(-1)^2 + 2(-1) + 1 = 3(1) - 2 + 1 = 3 - 2 + 1 = 2

Таким образом, f(-1) = 2.

c) Для x = 0:
Подставим x = 0 в многочлен f(x):
f(0) = 3(0)^2 + 2(0) + 1 = 0 + 0 + 1 = 1

Таким образом, f(0) = 1.

d) Для x = 1:
Подставим x = 1 в многочлен f(x):
f(1) = 3(1)^2 + 2(1) + 1 = 3(1) + 2 + 1 = 3 + 2 + 1 = 6

Таким образом, f(1) = 6.

e) Для x = 2:
Подставим x = 2 в многочлен f(x):
f(2) = 3(2)^2 + 2(2) + 1 = 3(4) + 4 + 1 = 12 + 4 + 1 = 17

Таким образом, f(2) = 17.

Теперь запишем найденные значения функции f(x) в таблицу 17:

| x | f(x) |
| -2 | 9 |
| -1 | 2 |
| 0 | 1 |
| 1 | 6 |
| 2 | 17 |

2. Теперь найдем значения h(x) для заданных x.
Процедура аналогична шагу 1.

a) Для x = -2:
Подставим x = -2 в многочлен h(x):
h(-2) = (-2)^4 - 5(-2)^2 + 6 = 16 - 5(4) + 6 = 16 - 20 + 6 = 2

Таким образом, h(-2) = 2.

b) Для x = -1:
Подставим x = -1 в многочлен h(x):
h(-1) = (-1)^4 - 5(-1)^2 + 6 = 1 - 5(1) + 6 = 1 - 5 + 6 = 2

Таким образом, h(-1) = 2.

c) Для x = 0:
Подставим x = 0 в многочлен h(x):
h(0) = (0)^4 - 5(0)^2 + 6 = 0 - 5(0) + 6 = 0 + 6 = 6

Таким образом, h(0) = 6.

d) Для x = 1:
Подставим x = 1 в многочлен h(x):
h(1) = (1)^4 - 5(1)^2 + 6 = 1 - 5(1) + 6 = 1 - 5 + 6 = 2

Таким образом, h(1) = 2.

e) Для x = 2:
Подставим x = 2 в многочлен h(x):
h(2) = (2)^4 - 5(2)^2 + 6 = 16 - 5(4) + 6 = 16 - 20 + 6 = 2

Таким образом, h(2) = 2.

Запишем найденные значения функции h(x) в таблицу 17:

| x | f(x) | h(x) |
| -2 | 9 | 2 |
| -1 | 2 | 2 |
| 0 | 1 | 6 |
| 1 | 6 | 2 |
| 2 | 17 | 2 |

Таким образом, таблица 17 будет выглядеть следующим образом:

| x | f(x) | h(x) |
| -2 | 9 | 2 |
| -1 | 2 | 2 |
| 0 | 1 | 6 |
| 1 | 6 | 2 |
| 2 | 17 | 2 |

Это и будет ответом на задачу.
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Математика