1. Проведи в грани ВВ1С1С диагональ ВС1. Эта диагональ - есть проекция наклонной АС1 на плоскость ВВ1С1С.
2. Согласно теореме о наклонной угол АВС1 - искомый угол между прямой AC1 и плоскостью BCC1. Обозначим его через г.
3. Рассмотрим треугольник АВС1. Так как АВ перпендикулярно ВС и перпендикулярно ВВ1, то АВ перпендикулярно BCC1. (теорема есть такая)
4. Следовательно, треугольник АВС1 - прямоугольный со всеми вытекающими отсюда последствиями.
5. Обозначим ребро куба через а. Тогда АС1 = а*корень (3) - диагональ куба. И ВС1 = а*корень (2) - диагональ квадрата ВВ1С1С.
6. Тогда в прямоугольном треугольнике АВС1--- косинус (г) = ВС1/АС1=корень (2/3). Отсюда: г = арккосинус ( корень (2/3)).
ответ 2:
Угол между прямой и плоскостью - это угол между прямой и её проекцией на эту плоскость. Проекция - это отрезок между точкой пересечения прямой с плоскостью и основанием перпендикуляра к плоскости. На рисунке первого ответа видно, что С1D1 это перпендикуляр к плоскости АА1D1 так как он перпендикулярен двум пересекающимся прямым этой плоскости. Значит искомый угол - это угол С1АD1
ответ1:
1. Проведи в грани ВВ1С1С диагональ ВС1. Эта диагональ - есть проекция наклонной АС1 на плоскость ВВ1С1С.
2. Согласно теореме о наклонной угол АВС1 - искомый угол между прямой AC1 и плоскостью BCC1. Обозначим его через г.
3. Рассмотрим треугольник АВС1. Так как АВ перпендикулярно ВС и перпендикулярно ВВ1, то АВ перпендикулярно BCC1. (теорема есть такая)
4. Следовательно, треугольник АВС1 - прямоугольный со всеми вытекающими отсюда последствиями.
5. Обозначим ребро куба через а. Тогда АС1 = а*корень (3) - диагональ куба. И ВС1 = а*корень (2) - диагональ квадрата ВВ1С1С.
6. Тогда в прямоугольном треугольнике АВС1--- косинус (г) = ВС1/АС1=корень (2/3). Отсюда: г = арккосинус ( корень (2/3)).
ответ 2:
Угол между прямой и плоскостью - это угол между прямой и её проекцией на эту плоскость. Проекция - это отрезок между точкой пересечения прямой с плоскостью и основанием перпендикуляра к плоскости. На рисунке первого ответа видно, что С1D1 это перпендикуляр к плоскости АА1D1 так как он перпендикулярен двум пересекающимся прямым этой плоскости. Значит искомый угол - это угол С1АD1